

Physics

1. Energy

Unified

etermined

Revisiting Booklet

pen-minded

Name:

Resilient

4.1.1.1 – Energy stores and systems

1) Name as many types of energy as possible.

2) What are the energy changes in the following situations?					
a)	A ball thrown upwards energy at start	energy at end			
b)	An object hitting an obstacle energy at start	energy at end			
c)	An object accelerated by a person pus energy at start	hing it energy at end			
d)	A moving bike putting on its brakes energy at start	energy at end			
e)	A kettle boiling some water energy at start	energy at end			

4.1.1.2 Changes in energy

1) What are the formulas for the following:

Kinetic energy?

Potential energy?

Energy stored in a spring?

- 2) a)What is the unit of energy?
- b) What is the unit of mass?
- c) What is the unit of velocity?

Kinetic energy

Calculate the kinetic energy for the following;

- a) The energy of a 1200kg car travelling at 20m/s
- b) The energy of a 1200kg car travelling at 40m/s

- c) The energy of a person with a mass of 60kg running at 5 m/s
- d) *Harder* The mass of a tennis ball which has a velocity of 36m/s and an energy of 64.8J
- e) Harder The velocity of a bird with a mass of 0.5kg with an energy of 400J

Potential energy

Calculate the potential energy for the following;

 a) A person with a mass of 50kg who walks up stairs to a height of 5m high.

b) A plane which has a mass of 10,000kg which travels up to a height of 1000m

- c) A rollercoaster car of mass 400kg containing four people with a mass of 250kg which goes up to a height of 80m.
- d) A rocket of mass 5kg travelling to a height of 1500m
- *e) Harder* what height does a paper plane of mass 20g have if it gains 1J of energy?
- *f) Harder* what mass does an Frisbee have if it is thrown up 20m and gains 4J of energy.

Elastic potential

Calculate the following:

a) The elastic potential for a bow with a spring constant of 100 which is pulled back 65cm (think about the unit)

Elastic Potential Energy

• The energy from a spring being altered from its standard shape.

$$E_p = \frac{1}{2}kx^2$$

k: spring constantx: distance spring is stretched or compressed.

http://www.youtube.com/watch?v=Jnj8mc04r 9E

 b) The elastic potential in a bungee jumping cord with a spring constant k=2 which extends 40m *c) Harder* what is the extension of a slinky with a spring constant of 0.2 when it stores 3J of energy?

4.1.1.3 – Energy changes in systems

Use the following key words to complete the sentences

Hotter	Matt	Shiny	Emit
Dark	Absorb	Light	
All objects	and		. infrared radiation. The
	an object is, the	more infrare	ed radiation it radiates.
	, S	surfaces are g	good absorbers and good emitters
of infrared r	adiation	,	surfaces are poor
absorbers a	nd poor emitters of	f infrared rad	iation
	surfaces are goo	d reflectors	of infrared radiation.

P1.1.2 Kinetic Theory

Draw particle diagrams showing the three states of matter

Describe the different amounts of energy in solids, liquids and gases.

P1.1.3 Energy Transfer by Heating

What are the three methods of energy transfer by heating?

-
- •
-

Use the diagram and describe the process of convection.

 ••••••	 	

Use the diagram and describe the process of convection.

 Describe the factors that affect the rate of evaporation.

