

Physics

1. Energy

Revisiting Booklet

Name:

Resilient

Open-minded

Determined

Energy stores and systems

Name as many types of energy as possible. Underline those that are types that can be examples of stored energy
•
•
•
•
•
2) What are the energy changes in the following situations?
a) A ball thrown upwards energy at start energy at end
b) An object hitting an obstacle energy at start energy at end
c) An object accelerated by a person pushing it energy at start energy at end
d) A moving bike putting on its brakes energy at start energy at end
e) A kettle boiling some water energy at start energy at end
Changes in energy
1) What are the formulas for the following:
The kinetic energy of an object can be calculated using the equation:
Word equation:
Symbol equation:
Units:

Symbol equation: Units: The Energy stored in a spring of an object can be calculated using the equation: Assuming	Word equation:	
Units: The Energy stored in a spring of an object can be calculated using the equation: Assuming is not exceeded Word equation: Symbol equation: Given to you Units: Kinetic energy Calculate the kinetic energy for the following;	Symbol equation:	
The Energy stored in a spring of an object can be calculated using the equation: Assuming is not exceeded Word equation: Symbol equation: Units: Kinetic energy Calculate the kinetic energy for the following;		
Assuming	Units:	
Assuming		
Assuming		
Assuming	The Energy stored in a spring of an object can be calculated	tusing the equation:
Word equation: Symbol equation: Units: Kinetic energy Calculate the kinetic energy for the following;		
Units: Kinetic energy Calculate the kinetic energy for the following;		_ is not exceeded
Kinetic energy Calculate the kinetic energy for the following;	Symbol equation:	Given to you
Calculate the kinetic energy for the following;	Units:	
Calculate the kinetic energy for the following;		
Calculate the kinetic energy for the following;		
	Kinetic energy	
a) The energy of a 1200kg car travelling at 20m/s	Calculate the kinetic energy for the following;	
	a) The energy of a 1200kg car travelling at 20m/s	
units		units
b) The energy of a 1200000g car travelling at 40m/s	b) The energy of a 1200000g car travelling at 40m/s	
		unite

The gravitational potential energy of an object can be calculated using the equation:

c) The energy of a person with a mass of 60kg running at 5 m/s
units
d) Harder The mass of a tennis ball which has a velocity of 36m/s and an energy of 64.8J
units
e) Harder The velocity of a bird with a mass of 0.5kg with an energy of 400J
units
Gravitational potential energy
Calculate the potential energy for the following. Assume gravitation field strength of 10N/kg
a) A person with a mass of 50kg who walks up stairs to a height of 5m high.
units
b) A plane which has a mass of 10,000kg which travels up to a height of 1000m
units

	units
d) A rocket of mass 5 tone travelling	to a height of 1500m
	units
e) Harder what height does a paper p energy?	plane of mass 20g have if it gains 1J of
	units
	have if it is thrown up 20m and gains 4J of
f) Harder what mass does a Frisbee energy.	
f) Harder what mass does a Frisbee energy.	have if it is thrown up 20m and gains 4J of
f) Harder what mass does a Frisbee energy.	have if it is thrown up 20m and gains 4J of

 b) The elastic potential in a bungee jumping cord with a spring constant k=2 which extends 40m 	
units	•
c) Harder what is the extension of a slinky with a spring constant of 0.2 when it stores 3J of energy?	
units	
Energy changes in systems	
Specific heat capacity is the	

Required practical activity 14: determine the specific heat capacity of a material

Method:

The amount of energy stored in or releases from a system from its temperatures changes can be calculated using the equation:

Word equation:	
Symbol equation:	
	Given to you
Units:	T can be
	represented
	as θ
Calculate the energy needed to raise the temperature of a 0.2kg block from 15°C to 40°C. Aluminium specific heat capacity is 900	J/kg °C
units	
Calculate the energy transferred when 100g of water is heated fr 50°C. The specific heat capacity of water is 4.2 J/kg/°C.	rom 25°C to
units	
Calculate the specific heat capacity of copper. It took 10.78kJ to copper from 22° C to 50° C.	heat 1kg of
units	

<u>Power</u>
What is power?
What are the two power equations?
Word equation:
Cymbal agyatian
Symbol equation:
Units:
Word equation:
Symbol equation:
Units:
A motor transfers 4.8kJ of energy in 2 minutes. Find its power.
7 motor transfers motor of energy in 2 minutes. This its power.
units
How long does it take for a 550W motor to do 110J of work?
units

A powerful machine is one which can transfer a lot of energy in a shorter time (not necessarily one which exerts the most force).

It takes 8000J of work to life a stunt can lift the stunt performer to the co 300s to life the performer to the san Calculate the power.	orrect height in 50s	s. Motor B would take
Energy transfers in a system		
Energy can be,	or	but cannot be
or	This means tha	t in a closed system
(where nothing can enter or exit) the	e net energy chang	ge would be
·		
Dissipated energy is energy that is of	ften describes as _	.
Unwanted energy transfers can be re	educed. For examp	ole to reduce heat loss
from a kettle it is	Γhe higher therma	l conductivity of a
material the higher the rate of		To reduce energy
being used to overcome friction in a	turbine	can be used.
List 6 ways to insulate a home		
1.		
2.		
3.		
4.		
5.		
6.		

What are the three methods of energy transfer by heating?

- •
- •
-

Use the diagram and describe the process of convection.

Use the diagram and describe the process of conduction.

A lamp with an efficiency of 0.740 is supplied with 350J of energy. How much energy is usually transferred by the lamp?
units
A motor is supplied with 250W of power and outputs 120W of useful power. What is the efficiency of the motor? Give your answer as a decimal.
units
National & global energy resources List the main energy resources used on Earth & underline the renewable ones 1. 2. 3. 4. 5. 6. 7. 8. 9.
A renewable energy resource is
What are the main uses of energy sources? 1. 2. 3.

Method of generating electricity	How does it work?	Advantages	Disadvantages
Solar			
Wind			
Geothermal			
Waves / Tidal			
Fossil fuels			
Nuclear			