

Physics

1. Energy

Revisiting Booklet

Name:

Resilient

Open-minded

Determined

Energy

Topics:

- 1. Energy stores and systems
- 2. Changes in energy
- 3. Energy changes in systems
- 4. Power
- 5. Energy transfers in a system
- 6. Efficiency
- 7. National and global energy resources

Energy stores and systems

1) Name as many types of energy as possible. Underline those that are types					
that can be examples of stored energy					
•					
•					
•					
2) What are the anarry changes in the following situations?					
2) What are the energy changes in the following situations?					
a) A ball thrown upwards					
energy at start energy at end					
b) An object hitting an obstacle					
energy at start energy at end					
c) An object accelerated by a person pushing it					
energy at start energy at end					
d) A moving bike putting on its brakes					
energy at start energy at end					
e) A kettle boiling some water					
energy at start energy at end					

Changes in energy

1) What are the formulas for the following:

The kinetic energy of an object can be calculated using the equation:

Word equation:	
Symbol equation:	
Units:	
The gravitational potential energy of an object can be calculated	using the equation:
Word equation:	
Symbol equation:	
Units:	
Offits.	
The Energy stored in a spring of an object can be calculated using	ng the equation:
Assuming is	not exceeded
Word equation:	
Symbol equation:	Given to you
Units:	

Kinetic energy

Calculate the kinetic energy for the following;
a) The energy of a 1200kg car travelling at 20m/s
units
b) The energy of a 1200000g car travelling at 40m/s
units
c) The energy of a person with a mass of 60kg running at 5 m/s
units
d) Harder The mass of a tennis ball which has a velocity of 36m/s and an energy of 64.8J
units
e) Harder The velocity of a bird with a mass of 0.5kg with an energy of 400J
units
Gravitational potential energy
Calculate the potential energy for the following. Assume gravitation field strength of 10N/kg
a) A person with a mass of 50kg who walks up stairs to a height of 5m high.

	units
b)	A plane which has a mass of 10,000kg which travels up to a height of 1000m
	units
c)	A rollercoaster car of mass 400kg containing four people with a mass of 250kg which goes up to a height of 80m.
d)	A rocket of mass 5 tone travelling to a height of 1500m
e)	Harder what height does a paper plane of mass 20g have if it gains 1J of energy?
f)	Harder what mass does a Frisbee have if it is thrown up 20m and gains 4J of energy.
	units

Elastic potential

Calculate the following:

a) The elastic potential for a bow with a spring constant of 100 which is pulled back 65cm (think about the unit)

Elastic Potential Energy

• The energy from a spring being altered from its standard shape.

$$E_p = \frac{1}{2}kx^2$$

k: spring constant

x: distance spring is stretched or compressed.

	ι	units
b)	The elastic potential in a bungee jumping cord with a sp which extends 40m	
c)	Harder what is the extension of a slinky with a spring costores 3J of energy?	

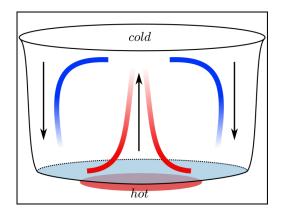
Energy Changes in Systems

Specific heat capacity is the	
Required practical activity 14: determine the specific heat capacity of a material Method:	
The amount of energy stored in or releases from a system from changes can be calculated using the equation:	its temperatures
Word equation:	
Symbol equation:	
	Given to you
Units:	T can be represented

as θ

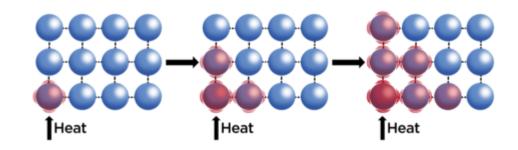
Calculate the energy needed to raise the temperature of a 0.2kg aluminium block from 15°C to 40°C. Aluminium specific heat capacity is 900 J/kg °C				
units				
Calculate the energy transferred when 100g of water is heated from 25°C to 50°C. The specific heat capacity of water is 4.2 J/kg/°C.				
units				
Calculate the specific heat capacity of copper. It took 10.78kJ to heat 1kg of copper from 22°C to 50°C.				
units				

Power


What is power?
What are the two (non-electricity) power equations?
Word equation:
Symbol equation:
Units:
Word equation:
Symbol equation:
Units:
A motor transfers 4.8kJ of energy in 2 minutes. Find its power.
units

How long does it take for a 550W motor to do 110J of work?					
units					
A powerful machine is one which can transfer a lot of energy in a shorter time (not necessarily one which exerts the most force).					
It takes 8000J of work to life a stunt performer to the top of a building. Moto A can lift the stunt performer to the correct height in 50s. Motor B would take 300s to life the performer to the same height. Which motor is more powerful. Calculate the power.					

Energy transfers in a system


Energy can be	, or	but cannot be
or	This means th	at in a closed system
(where nothing can enter or ex	it) the net energy chan	ige would be
Dissipated energy is energy tha	t is often describes as	·
Unwanted energy transfers can	be reduced. For exam	ple to reduce heat loss
from a kettle it is	The higher therm	al conductivity of a
material the higher the rate of		To reduce energy
being used to overcome friction	ı in a turbine	can be used.
List 6 ways to insulate a home		
1.		
2.		
3.		
4.		
5.		
6.		
What are the three methods of	energy transfer by he	ating?
•		
•		
•		

Use the diagram and describe the process of convection.

• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

Use the diagram and describe the process of conduction.

 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Required practical activity 2: Thermal conductivity

There are two parts to this investigation:

- 1. Investigating factors that may affect the thermal insulation properties of a material.
- 2. Investigating the effectiveness of different materials as thermal insulators.

The equipment list is:

- 100 ml beaker (×5)
- 250 ml beaker (×5)
- 800 ml beaker (×5)
- thermometer (×5)
- kettle to heat water
- piece of cardboard
- scissors
- stopwatch
- insulating material, eg newspaper, corrugated cardboard, bubble wrap, sawdust, polystyrene granules

Write a method for each practical

1. Investigating factors that may affect the thermal insulation properties of a material.					

Investigating the effectiveness of different materials as thermal insulators.			

What would happen to your results if the insulating material (e.g. newspaper) became wet?

Efficiency

Efficiency can be calculated by using 1 of two equations:

Equation 1:
Equation 2:
Efficiency can be left as a decimal or x100 to convert into a percentage.
, , , , , , , , , , , , , , , , , , ,
An electric fan is supplied with 2000kJ of energy. 600kJ of that is transferred to
useless thermal energy stores. What is the efficiency of the fan as a percentage?
units
A lamp with an efficiency of 0.740 is supplied with 350J of energy. How much energy is usually transferred by the lamp?
units
A motor is supplied with 250W of power and outputs 120W of useful power. What is
the efficiency of the motor? Give your answer as a decimal.
units
(HT only) Describe two ways to increase the efficiency of an intended energy transfer.

National & global energy resources

List the main energy resources used on Earth & underline the renewable ones
1.
2.
3.
4.
5.
6.
7.
8.
9.
A renewable energy resource is
What are the main uses of energy sources?
1.
2.
2

Method of generating electricity	How does it work?	Advantages	Disadvantages
Solar			
Wind			

Geothermal		
Waves / Tidal		
Fossil fuels		
Nuclear		