

Physics

5. Forces

Foundation combined science

Revisiting Booklet

Name:

Forces and their interactions	
A scaler is a physical quantity with	
Examples of scalers:	
• • • • •	
A vector is a physical quantity with	and
Examples of vectors:	
A force is a	Vectors are represented by: that acts on an object due to the interaction with
another object. All forces between objects are ei	that acts on an object due to the interaction with ther:
contact forces	non-contact forces
- Francisco	- Francisco
The normal force is perpendicular to the surfaces in contact.	Examples: planet

Weight is the force acting on an object	due to, so depends on the, which varies it is a lot less on the moon
(0.6N/Kg) compared to Earth (10N/Kg).	Weight is measured from an objects

The weight of an object can be calculated using the equation:

Word ed	quation:				
Symbol	equation:				
Units:					
(c)	An object has a	weight of 6.4 N.			
	Calculate the m	ass of the object.			
	Use the equation	on			
		mass = weight ÷ gravitation	al field strength (g)		
	gravitational fie	ld strength = 9.8 N / kg			
			Mass =	kg	
					(1)
	ght of an object of mass'.	may be considered to act a	t a single point referre	ed to as the object's	
The wei	ght of an objec	and the mass of an object a	are		
What is	the resultant fo	rce?			
2 N	1N	Forces are show by arrows	s. The longer the arro	w, the greater the force	ce.
Result	ant force:	Resultant force is the over	all force; 2N -1N = 1N	1	

How might	a resultant force change an object?	
If the resulta	ant force acting on a stationary object is	
If the resulta	ant force acting on a moving object is:	
Zero	, then	
Not z	zero, then	
(b)	A fisherman pulls a boat towards land.	
	The forces acting on the boat are shown in Diagram 1 .	
	The fisherman exerts a force of 300 N on the boat. The sea exerts a resistive force of 250 N on the boat.	
	Diagram 1	
	250 N 300 N	
	(i) Describe the motion of the boat.	
		-
		-
		(2)
ipart 2	2)What is the resultant force?	(1)

Work done and energy transfer

Name the ten different types of energy:

What is work done? Work done against the frictional forces acting on an object causes a rise in the ____ of the object. The work done by a force on an object can be calculated using the equation: Word equation: Symbol equation: Units: 1 newton metre = 1 joule What is the work done when Nazma moves an object 15cm by a force of 50N?units What is the energy transfer occurred?

Forces and elasticit	У		
stretch, compress or		in this way more thar	s applied on an object it may n one force must be applied
Elastic deformation	1. Original form 2. Force applied 3return to original form.	before impact after impact	
Force of an extension	n can be calculated using th	e equation:	
Word equation: Symbol equation:			
Units:			
A 12N force is used to compression of the s	o compress a spring with a pring.	spring constant of 96	6 N/kg. Calculate the

...... units

	units
Required practical activity 18 or a spring	3: investigate the relationship between force and extension
lethod:	
	Extension
	Extension
	Fracture Plastic region
	Elastic region
	Wolcht
	Weight
low can the spring constant	t be calculated?
looke's law	
As the force on the sprir	ng is increased the extension of the spring
	to the force added (as the force is ension is) up until a certain point 'the elastic
limit'	j up until a certain point the elastic
IIIIIL	

Forces and motion		
Distance is D	istance does not involve direc	ction. Distance is a
quantity.		
Displacement is	and	Displacement is a
quantity.		
Speed is	Speed is a	quantity. Speed is constantly
changing due to a number of fac	tors, such as a person's spee	ed of walking is influenced by
,,	_ and	
Typical values of speed include: walking ~ running ~ cycling ~	You need to know these	
Car~ Train ~ Plane ~	values approximately.	
It is not only moving objects that wind also vary. A typical value for	, , ,	ed of sound and the speed of the 330 m/s.
For an object moving at constant using the equation:	speed the distance travelled	in a specific time can be calculated
Word equation:		
Symbol equation:		
Units:		
A cat is walking at the speed of 0 takes to walk 32m. How does this		
		units
		unto

For an object moving at a varying speed you can calculate its average speed using the same equation: s=vt. You will need to add up the distance and time for each part to do this.

	units
	ect is
Velocity is a	quantity. E.g. 0.69m/s north.
time graph.	ng a straight line, the distance travelled can be represented by a distance—ce-time graph of a Mohammed walking to work and back again.
	40 30 20 20 40 60 80 100 Time (s)
,	et can be calculated from the gradient of its distance–time graph. f Mohamed walking to work in its first 20 seconds:

Acceleration is when an object is Deceleration is when an object is
The acceleration of an object can be calculated from the gradient of a velocity–time graph.
The average acceleration of an object can be calculated using the equation:
Word equation:
Symbol equation:
Units:
Annotate the velocity time graph:
Velocity (m/s) 25 20 15
10 A 5 10 15 20 25 30 Time (seconds)
Calculate the acceleration of William's bus during the first 10 second of his journey
units
Estimating accelerations can be worked out from objects typical speed and suggesting a typical time it would take to stop.
A car comes to a stop when it collides with a tree. Estimate the deceleration of the car.
units

Uniform acceleration is where
Near the Earth's surface any object falling freely under gravity has an acceleration of about 9.8 $$ m/s $^2.$
An object falling through a fluid initially accelerates due to the force of gravity. Eventually the
resultant force will be zero and the object will move at its
The following equation applies to uniform acceleration:
Word equation:
Symbol equation:
Units:
A ball has been dropped from the top of a building. The velocity of the ball when it is 2.25m from the ground is 6m/s . Near the Earth's surface any object falling freely under gravity has an acceleration of about 9.8m/s^2 . Calculate the velocity of the ball when it reaches the ground. You can assume there is no air resistance.
units
Forces, accelerations and Newton's Laws of motion
Newton's First Law:
If the resultant force acting on an object is zero and:
The object is stationary, then the object remains
The object is moving, the object
The velocity (speed and/or direction) of an object will only change if
If a rocket is moving through space at a steady velocity, what can you say about the resultant force acting on the rocket?

Annotate the graph with the words below.

Balanced forces, unbalanced forces, steady speed, acceleration, deceleration What two forces are balanced when an object reaches terminal velocity? Newton's Second Law: The acceleration of an object is ______ to the resultant force acting on the object, and to the mass of the object. As an equation: Word equation: Symbol equation: Units: A car with a mass of 900kg accelerates from rest with an initial acceleration of 2.5 m/s². Calculate the resultant force required to produce this acceleration. units A car with a mass of 1250kg has an engine that provides a driving force of 5200N. At 70mph the drag force acting on the car is 5100N. Find its acceleration at 70 mph

...... units units

				units	
acceleration of		nstant mass, a	and the effect of va	g the force on the arying the mass of an ob	jec
Method:			Ü		
1.					
2.					
3.					
4.					
5. 6.					
7.					
7.					
Uso the followin	g equations to find	accoloration			
ose the followill	g equations to mild	acceiei diiUII.			
s = v t					
$a = \Delta v/t$					
	D: 1 /)	Time (s)	Speed (m/s)	Acceleration (m/s ²)	
Mass (kg)	Distance (m)	111116 (3)	Speed (III/S)	Acceleration (III/S)	
Mass (kg) 0.1	0.05	15	Speed (III/3)	Acceleration (m/s)	

Mass (kg)	Distance (m)	Time (s)	Speed (m/s)	Acceleration (m/s ²)
0.1	0.05	15		
0.2		13		
		11		

Conclusion:		

Newton's Third Law:

Whenever two objects interact, the forces they exert on each other are

An example of this is when a man pushes against a wall, there is a normal contact force acting back. This normal force is equal to the force the man is exerting on the wall.

The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(iii) Complete the following by drawing a ring around the correct line in the box.

The car exerts a force of 5000 N on the barrier. The barrier does not move. The force

exerted by the barrier on the car will be

(1)

Forces and braking

What is the equation to work out stopping distance?

The greater the speed of the vehicle, the _____ the stopping distance.

Distance (metres)

Factors affecting braking distance	Factors affecting thinking distance			
Reaction times vary from person to person. Typical values range from 0.2 s to 0.9 s				
.A typical way to measure reaction time is				
When a force is applied to the brakes of a vehicle	, by the friction force			
between the brakes and the wheel reduces the of the vehicle and the				
temperature of the brakes				
The greater the speed of a vehicle the greater the braking force needed to stop the vehicle in a				
certain distance. The greater the braking force the greater the of the				
vehicle. Large decelerations may lead to				