Chemistry

3. Quantitative Chemistry

Revisiting Booklet

Name:

Chemical measurements

What does the law of conservation state?

Complete the missing masses:
Magnesium + Oxygen \rightarrow Magnesium oxide
$5 \mathrm{~g}+\rightarrow \quad \rightarrow \quad 5.6 \mathrm{~g}$
Iron oxide + carbon monoxide \rightarrow iron + carbon dioxide
$150 \mathrm{~g}+20 \mathrm{~g} \quad \rightarrow \quad 132 \mathrm{~g}+$ \qquad g

It is important to balance symbol equations to represent the law of conservation.

Elements	Left	Right
H	2	1
Cl	2	1

You can only balance an equation by increasing the number of each type of molecule adding a big number in front. For example:

Elements	Left	Right
H	2	2
Cl	2	2

This equation is now balanced.
How many atoms are in the following: KMnO_{4}

Try \& balance the following equations:

1. $\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
2. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
3. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$
5. $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
6. $\mathrm{HCl}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
7. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
8. $\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$

The relative atomic mass of an element is it's average mass compared to carbon, this mass takes into account the abundance of each isotope. The relative atomic mass of each atom can be found on the periodic table:

Carbon	
Relative atomic mass	
Atomic number	
Number of protons	
Number of neutrons	
Number of electrons	

What is an isotope?

Relative atomic mass of an atom can be calculated using the following equation:

Relative

of atom __mass of isotope \qquad mass of isotope total abundance

Calculate the following relative atomic masses:

1. bromine with 50% bromine- 79 and 50% bromine- 81
2. Magnesium with 79% magnesium- $24,10 \%$ magnesium- 25 and 11% magnesium- 26

What is relative formula mass (Mr)?

Calculate the relative formula mass for the following molecules:

- NaOH
- CuSO_{4}
- NH_{3}
- $\mathrm{Ba}(\mathrm{OH})_{2}$

In a balanced chemical equation, the sum of the relative formula masses of the reactants in the quantities shown \qquad the sum of the relative formula masses of the products in the quantities shown. Why would this reaction appear to involve a mass change?

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

Percentage Composition

What is the percentage of:

1. N in NH_{3}
2. S in FeSO_{4}
3. S in $\mathrm{H}_{2} \mathrm{SO}_{4}$
4. O in $\mathrm{Al}(\mathrm{OH})_{3}$
5. N in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Uncertainty
Whenever a measurement is made there is always some uncertainty about the result obtained. We can estimate uncertainty in two ways:

1. Considering the resolution of measuring instruments
2. From the range of a set of repeat measurements

Resolution of instrument is plus or minus half of the smallest division that it measures to:

Measurement cm^{3}	Uncertainty cm^{3}	Minimum Volume cm^{3}	Maximum Volume cm^{3}
80.0	± 0.05		
75.5	± 0.10		
60	± 0.20		
120	± 0.25		

Range of data:

From data we could either calculate the uncertainty of a mean result or draw error/range bars on a graph the larger the error/range bar to more uncertainty

Uncertainty of a mean result = range $/ \mathbf{2}$
Velocity versus Time

Calculate the missing mean for drop height 40 cm .
Give the uncertainty in your answer.

Drop height in cm	Roll height in cm			
	Test 1	Test 2	Test 3	Mean
20	15	14	14	14
40	29	33	32	
60	47	19	46	46
80	65	61	63	63

Mean \qquad cm

Uncertainty
Cm

Practise drawing the error/range bars below:

Higher tier only
Use of amount of substance
What is a mole?

What is Avogadro 's constant?
In chemistry we use the term mole - give a different example in another industry

What is the unit for mole?

The mass of one mole of substance in grams is numerically equal to its relative formula mass. E.g. the mass of one mole of water is 18.

1. How many atoms are in one mole of carbon?
2. How many molecules are in one mole of water?
\qquad

Calculate the number of moles of 4 g of MgO.	Calculate the mass of 2.5 moles of N_{2}.
Calculate the number of moles of $0.25{\text { g of } \mathrm{H}_{3} \mathrm{PO}_{4} .}$	Calculate the mass of 0.8 moles of CuSO_{4}.

What is the molar mass?

Reacting Masses

You can use a balance symbol equation to calculate the mass of a reactant or product:

| If 28 g of iron reacts with copper sulphate
 solution, what mass of copper will be made?
 $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}+\mathrm{FeSO}_{4}$ |
| :--- | :--- | :--- |
| Fe Cu
 mass 28 g $0.5 \times 63.5=$
 31.75 g
 M_{r} 56 63.5
 moles $28 / 56=0.5$ 0.5 |

1. How much calcium oxide (CaO) is when 100 g of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ is heated? $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
2. What mass of lime (CaO) is created by fully decomposing 200 g of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$? $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
3. Sulphur burns in air to form sulphur dioxide. What mass of sulphur dioxide is created on burning $8 g$ of sulphur?

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

4. What mass of lime (CaO) is created by fully decomposing 20 g of calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$? $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
5. When magnesium is heated in chlorine gas it reacts to form magnesium chloride, MgCl_{2}. What mass of magnesium chloride will be formed from $72 g$ of magnesium?
$\mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}$

Using moles to balance equations

Given masses for the following equation; 150 g ethane, 560 g of oxygen, 440 g of carbon dioxide and 270 g of water: \quad Ethane + oxygen \rightarrow carbon dioxide + water

1) Work out moles for each species

	$\boldsymbol{C}_{2} \boldsymbol{H}_{\mathbf{6}}$	\boldsymbol{O}_{2}	$\boldsymbol{C O}_{2}$	$\boldsymbol{H}_{\mathbf{2}} \boldsymbol{O}$
Mass	150	560	440	270
Mr	30	32	44	18
Moles	5	17.5	10	15
/smallest moles	1	3.5	2	3

2) Use this to get the mole ratio

> 2:7:4:6
3) Use mole ratio to write the balanced symbol equation

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Try the following for yourself:

1) Write the balanced symbol equation for 488 g of Sb reacting with 425 g of Cl_{2} to make 914 g of SbCl 3
2) Write the balanced symbol equation for the 24 g of Magnesium (Mg) reacting with 16 g of Oxygen $\left(\mathrm{O}_{2}\right)$ to produce 40 g of Magnesium oxide MgO

What is a limiting reactant?

When calculating masses of reactants \& products, you may need to first find out which moles are limiting and use these rather than any in excess.

1) In the manufacture of the fertiliser ammonium sulphate, what is the maximum mass of ammonium sulphate that can be obtained from 2.00 kg of sulphuric acid and 1.00 kg of ammonia? $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4}$
2) In the Solvay process, ammonia is recovered by the reaction shown. What is the maximum mass of ammonia that can be recovered from 2.00 tonnes of ammonium chloride and 0.500 tonnes of calcium oxide?
$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{CaO} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}$

What is meant by the term concentration?

Give three examples of solutions that need to be diluted and the reason why:
1.
2.
3.

What is the equation for calculating concentration from mass?

Volume is often recorded in dm^{3}

- $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$
- $1 \mathrm{l}=1 \mathrm{dm}^{3}$
- $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$

What is $750 \mathrm{~cm}^{3}$ in dm^{3} ?

1. 0.5 grams of sodium chloride is dissolved to make $0.05 \mathrm{dm}^{3}$ of solution in $\mathrm{g} / \mathrm{dm}^{3}$
2. 0.5 grams of sodium chloride is dissolved to make $0.05 \mathrm{~cm}^{3}$ of solution in $\mathrm{g} / \mathrm{dm}^{3}$.
3. 6.7×10^{-2} grams of $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}$ are dissolved to make $3.5 \mathrm{dm}^{3}$ of solution in $\mathrm{g} / \mathrm{dm}^{3}$.

Higher tier
If the volume is kept the same and more mass is added, the concentration \qquad
If water evaporated from a solution of copper sulphate, the concentration \qquad

